
 Sommerfeld enhancement from Goldstone pseudo-scalar exchange

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP11(2009)046

(http://iopscience.iop.org/1126-6708/2009/11/046)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 01/04/2010 at 13:32

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/11
http://iopscience.iop.org/1126-6708/2009/11/046/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
1
1
(
2
0
0
9
)
0
4
6

Published by IOP Publishing for SISSA

Received: July 21, 2009

Revised: October 5, 2009

Accepted: October 18, 2009

Published: November 10, 2009

Sommerfeld enhancement from Goldstone

pseudo-scalar exchange

Paulo F. Bedaque, Michael I. Buchoff and Rashmish K. Mishra

Maryland Center for Fundamental Physics, Department of Physics, University of Maryland,

College Park, MD 20742-4111, U.S.A.

E-mail: bedaque@umd.edu, mbuchoff@umd.edu, rashmish@umd.edu

Abstract: We point out that the exchange of a Goldstone pseudo-scalar can provide an

enhancement in the dark matter annihilation rate capable of explaining the excess flux

seen in high energy cosmic ray data. The mechanism of enhancement involves the coupling

of s and d waves through the tensor force that is very strong and, in fact, singular at

short distances. The results indicate that large enhancements require some amount of fine

tuning. We also discuss the enhancement due to other singular attractive potentials, such

as WIMP models with a permanent electric dipole.

Keywords: Cosmology of Theories beyond the SM, Phenomenological Models

ArXiv ePrint: 0907.0235v2

c© SISSA 2009 doi:10.1088/1126-6708/2009/11/046

mailto:bedaque@umd.edu
mailto:mbuchoff@umd.edu
mailto:rashmish@umd.edu
http://arxiv.org/abs/0907.0235v2
http://dx.doi.org/10.1088/1126-6708/2009/11/046


J
H
E
P
1
1
(
2
0
0
9
)
0
4
6

Contents

1 Introduction 1

2 Sommerfeld enhancement with single-channel singular potential 3

3 Sommerfeld enhancement though Goldstone boson exchange: singular

couple-channels 6

4 Discussion 10

1 Introduction

One of the foremost candidates for dark matter are WIMPS, particles with masses (hun-

dreds of GeV) and interactions in the weak force range. Particles with these properties

are generated thermally in the early universe but decouple from the other particles early

enough such that a sizable number of them survived at present times. If they are stable

their mass and density would have the correct order of magnitude to be the dark matter

observed in rotation curves of galaxies, galactic clusters, and cold dark matter models of

structure formation. Recently, observations of the cosmic ray flux showed an excess in the

high energy component as compared to the standard models [1] describing the diffusion of

cosmic rays originating from supernova remnants [2–6]. Furthermore, the enhancement is

observed in the electron flux but not in the proton flux. One possible explanation to the

anomalous cosmic ray data is that it is the result of dark matter particles annihilating [7–9]

into light particles. If these light particles have a mass below hadronic scales, they will

decay mainly into electrons which would explain why the enhancement is not seen in the

proton flux. One problem with this interpretation of the data is that, given the known

dark matter density and the weak scale annihilation cross sections, the electron flux falls

short from the observed flux by one to three orders of magnitude (in the absence of sig-

nificant dark matter clumping and dependent on the observational data set considered).

It has been advocated [10] that models including a long range attractive force between

dark matter particles can enhance the annihilation cross sections to the observed levels, a

phenomenon refered to as the “Sommerfeld enhancement”[11–15]. If this force arises from

the exchange of a particle with a mass smaller than hadronic scales but larger than the

electron mass scale, the standard success of Big-Bang nucleosynthesis is preserved. This

light particle (referred here on as φ) can also be the product of dark matter annihilation,

nicely explaining the enhancement of the electron but not the proton flux. If this picture

is correct, the cosmic ray data should have a peak around the mass of the dark matter

particle. This is seen in the older data but not in the most recent GLAST results [6].

– 1 –
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An enhancement caused by the exchange of a light boson is also the essential ingredient

of a unified theory for dark matter[10, 16] that also addresses other observations like the

WMAP haze and the DAMA results.

Assuming that the picture above is correct, one has to deal with the fine tuning required

for the presence of a particle with mass in the GeV range in a theory with a typical scale

in the TeV range. Although solutions to this problem involving supersymmetry exist (for

example, see ref. [17–19]), a simple, natural solution would be to assume that the φ particle

is a pseudo-Goldstone boson. The small mass of φ would be, in this case, “technically

natural” in the sense that radiative corrections would be zero in the mφ = 0 limit. The

force generated through the exchange of a pseudo-scalar pseudo-Goldstone boson is, in

general, very complicated and spin dependent. In fact, it is a close analogue to the force

between two nucleons generated by pion exchange. Let us assume the dark matter particles

are spin 1/2 Dirac fermions. The force due to φ exchange, just like the nuclear force due

to pions, contains two pieces. One is a central force of the Yukawa type.1 The other, the

tensor force, operates only on spin triplet states and mixes L = 0 and L = 2 components of

the wave function. At short distances, r ≪ 1/mφ, the tensor potential goes as ∼ 1/r3 and

it becomes the dominating piece of the interaction. An observer might naively think that

a 1/r Yukawa potential will be dominant over a larger range than a 1/r3 tensor potential.

However, this is not the case. When comparing the form of the Yukawa potential to the

tensor potential,

m2
φMα

r
e−mφr vs.

Mα

r3
e−mφr,

one finds that the Yukawa could only dominate when r > 1/mφ. However, both potentials

are exponentially suppressed when r ∼ 1/mφ. Thus, within the range of these potentials,

the tensor part dominates the Yukawa force.

An additional complication is that the singular tensor force makes the Schrödinger

equation ill-defined. Therefore, we are led then to a renormalization procedure to make

the non-relativistic effective theory considered here meaningful. In the present case, the

renormalization program consists of introducing, in addition to the long range force, a

short distance interaction generated by a contact, four-fermion operator in the low-energy

effective theory. The range of this interaction is of the order of the inverse mass of other

states in the theory that have been integrated out, that is, of the order of TeV−1. The

strength of this potential can be determined only through a matching calculation to the

full theory in the dark matter sector and, as such, it is an additional parameter from the

point of view of the effective theory. The complications due to the mixing of the partial

waves and the need for the renormalization procedure form the bulk of the present paper.

In the next section, the issues arising in the calculation of the Sommerfeld enhancement in

the presence of a singular potential are discussed in the simpler context of a central, single-

channel 1/r3 potential. This example is not entirely without physical interest as models

of dark matter with electric dipole moments would contain such potential. In section 3 we

1For more details on enhancement from a dominant central Yukawa interaction, see ref. [20, 21].
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present the results of the full coupled-channel calculation. The conclusions are summarized

in section 4.

2 Sommerfeld enhancement with single-channel singular potential

The Sommerfeld enhancement is a simple quantum-mechanical effect that, at least in the

simpler case of uncoupled channels, has been discussed in the literature several times. Here

we briefly review the single channel calculation in order to highlight a couple of points that

are relevant to the non-central, singular potential case of interest.

Let us consider the annihilation of a pair of Dirac particle/antiparticle of mass M ,

attracting each other with a central, spin-independent potential proportional to 1/r3. This

potential could be generated by the exchange of an electromagnetic or “dark” photon

between particles with a permanent electric dipole.2 In addition, there will be a short

distance interaction at a scale R comparable to the one set by the mass (R ∼ 1/M). The

inclusion of this short distance piece is dictated by the renormalization properties of the

singular potential. If we take the quantum mechanical potential model as an effective theory

of a microscopic relativistic theory, this short distance potential arises from a four-fermion

operator needed to match the high energy theory.

We look for a solution to the Schroedinger equation satisfying the usual asymptotic

condition at large separations

ψ(~r) → eikz +
eikr

r
f(θ) =

∞
∑

l=0

(2l + 1)Pl(cos θ)

[

eikr(1 + 2ikfl) − (−1)le−ikr

2ikr

]

(2.1)

where r is the separation between the two particles, k the incoming momentum and f =
∑∞

l=0(2l + 1)flPl(cos θ) is the scattering amplitude. The wave function can be expanded

in partial waves as

ψ(~r) =

∞
∑

l=0

(2l + 1)
ul(r)

r
Pl(cos θ), (2.2)

and for central, spherically symmetrical potentials, the Schroedinger equation decouples

into separate equations for each partial wave:

− u′′l (r) +MV (r)ul(r) = k2ul(r). (2.3)

The solutions to eq. (2.3) behave at large r as free waves

ul(r) → A sin(kr − lπ/2 + δl). (2.4)

The constants A and δl are fixed by the two boundary conditions. One is ul(0) = 0, needed

in order for ψ(0) to be finite. The second one comes from the asymptotic condition in

eq. (2.1), which implies

A =
ileiδl

k
. (2.5)

2Recent studies [22, 23] found bounds on the electric and magnetic dipole moments from experiments.

In the context of our study, these correspond to (10−10αe) . G . (1 αe) where αe = 1/137. Bounds on a

dominant dipole interaction in the dark sector from a massive dark photon have yet to be explored.
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Figure 1. Annihilation process enhanced by multiple Goldstone boson exchanges. Solid lines

represent the dark matter particles, dashed lines the Goldstone boson and wavy lines may or may

not be the Goldstone particle.

The scattering amplitude is related to the phase shifts δl through e2iδl = 1+2ikfl and does

not depend on the normalization factor A. The same is true about the annihilation cross

section enhancement. This enhancement is given by the ratio between the interacting and

the free wave functions at origin (assuming a zero range bare annihilation amplitude)

S =

∣

∣

∣

∣

ψ(0)

ψ(0)(0)

∣

∣

∣

∣

2

. (2.6)

Thus, in the single channel case, the normalization in eq. (2.5) plays no role and can be

safely taken to be A = 1 (both for the free u(0) and interacting wave u). In the expression

for the Sommerfeld enhancement above, it was assumed that the annihilation proceeds

through a zero range interaction. More realistically, the mechanism of annihilation occurs

within a distance scale ∼ 1/M . This would be true, for instance, if the annihilation goes

through the process depicted in figure 2 as the vertical internal fermion lines are off-shell by

an amount ∼ M . The annihilation rate would then be determined by a weighted average

of the wave function over a region of size ∼ 1/M around the origin. However, for well

behaved potentials, the wave function varies little over this region and eq. (2.6) suffices.

As mentioned above, there is an additional issue when the potential is more singular

at origin than 1/r2. The Schrödinger equation with this potential is meaningless and leads

to the “fall-to-the center” scenario due to the extreme short distance attraction. Bound

states exist with arbitrarily high (negative) energy and the hamiltonian is not bounded from

below. The way out of this problem is well known. The quantum mechanical model we are

considering should be viewed as the low energy effective theory of the underlying relativistic

field theory describing the system. The validity of the non-relativistic description and the

1/r3 potential is limited to distances larger than a certain scale R where the effective

theory breaks down and the potential for shorter distances cannot be trusted. This fact,

of course, does not invalidate the use of the Schrödinger equation to describe low energy

annihilation. It only means that a renormalization procedure should be carried out. In the

present case we carry out the renormalization program by splitting the effective potential

into two pieces. The first, valid for r > R, is the 1/r3 potential generated by a light

particle exchange. The second, valid for r < R is a constant potential generated by a

four-fermion term in the effective theory lagrangian. The distance R is not a parameter of

the model and identical descriptions of the low energy physics should result from different

values of R, as long as the low energy couplings of the effective theory are made to depend

– 4 –
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on R appropriately. For non-singular potentials, the dimension 6 four-fermion operator

describing the short distance interaction is irrelevant and appear only at higher orders

of a low energy expansion. For potentials more singular than 1/r2 this is not true and

the short distance potential is necessary for a consistent calculation.3 The height V0 and

the range R of the potential are arbitrary. However, the requirement that the low energy

observables are independent of the regularization procedure (the values of R and V0) fixes

the dependence of V0 on R. The whole arbitrariness of the procedure is then reduced to the

arbitrariness of one parameter which can be taken to be the value of V0 at one specific value

of R. Physical results will depend on the value of this parameter. Given a microscopic

model one can calculate the scattering amplitudes by matching the microscopic model to

our effective theory. As a consequence, the Sommerfeld enhancement will not have the

universal character it has when only non-singular potentials appear.

The fact that the all low energy observables are rendered cutoff independent by adjust-

ing one short distance coefficient is shown, in the context of singular potential in quantum

mechanics, in ref. [24, 29]. In our case, we solve eq. (2.3) with the potential

V (r) =

{

− G
M2r3 for r > R,

V0 for r < R.
(2.7)

We will consider here a purely s-wave bare annihilation amplitude of short range. “Short

range”, in this context, means a range comparable to the cutoff R. In principle it is possible

to construct models where the range of the short distance elastic interaction, annihilation

amplitude, and mass are given by different scales. We will only consider here the more

natural case where both ranges are comparable to R ∼ 1/M . The annihilation amplitude is

subjected to the same renormalization procedure described for the elastic interaction. The

bare annihilation amplitude is a cutoff dependent quantity and only the amplitude dressed

by the potential is physical and cutoff independent. Again, given a microscopic model one

can evaluate the value of the annihilation amplitude in that model. For our purposes, we

regulate in the annihilation amplitude in a manner similar to the elastic potential

S =

∣

∣

∣

∣

u(0)

u0(0)

∣

∣

∣

∣

2

→
∣

∣

∣

∣

∣

∫ 3R
R dr u2(r)e−r2/R2

∫ 3R
R dr u2

0(r)e
−r2/R2

∣

∣

∣

∣

∣

(2.8)

where u0(r) is the wave function in the absence of the potential with the same normalization

as u(r) at large r. Different ways of smearing the ratio u(0)/u0(0) lead to very similar

results. The numerical solution of eq. (2.3) does not bring additional difficulty since the

form of the wavefunction is fixed by the u(0) = 0 boundary condition.

In figure 2 we present results for a sample of parameter values. These parameters were

chosen to mimic the physics of an actual exchange of Goldstone bosons in a theory for dark

matter as mentioned in the introduction. Thus, the strength of the potential (G ∼ 1) is of

the order of the one generated by Goldstone bosons with a decay constant of order ∼ M ,

and the hierarchy between the masses of the dark matter particle and the Goldstone boson

3Additionally, this short distance potential can have an O(k2) correction, but for small k, this correction

is negligible compared to V0.
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Figure 2. Sommerfeld enhancement S as a function of the potential strength G for two value of

V0 = 1/MR2, 10/MR2. The other parameter used are M = 1000 GeV,m = 1 GeV, k = 0.2 m and

R = 1/M .

is TeV/GeV ∼ 1000. A general trend towards larger enhancements for larger values of G

is observed. This is expected as a larger value of G means a more attractive potential.

In addition there are wild oscillations superposed on this general trend as either G or

V0 is varied. The peaks in the enhancement occur when there is a bound state close to

threshold. Let us compare these results to the enhancements generated by other central

potentials. In the case of the Yukawa potential, analytical estimates are available and show

a general trend of S growing proportionally to the strength of the potential. Numerical

calculations show that, in addition to this trend, there are regions of parameter space

where the enhancement is much larger. The enhancement due to a square well potential

is analytically calculable and again shows the large enhancements as bound states cross

the threshold. When both long and short distance potentials are combined it is difficult

to obtain any reliable analytical estimates. There is also a complicated dependence on the

momentum k. Since the 1/r3 potential does not make sense by itself, we always have to

consider the short potential with it, which makes analytical estimates difficult.

3 Sommerfeld enhancement though Goldstone boson exchange: singular

couple-channels

Goldstone-like pseudo-scalars with derivative couplings to fermions in the dark sector give

a naturally light exchange particle for dark matter interactions. It would be convenient

for building dark matter models if such as mechanism could lead to an enhancement of

annihilation cross sections. This possibility was considered in ref. [10] but quickly discarded

since the part of the potential surviving in the m = 0 limit (the tensor force) vanishes when

averaged over the s-wave initial and final state. While true that the tensor contribution

leads to a change in the orbital angular momentum of ∆L = 2, for a fixed total angular

momentum J , this contribution can take a state with L = ℓ to L = ℓ + 2 and then back

to L = ℓ. Since this process can occur an arbitrary number of times, a coupled-channel

analysis is necessary in order to account for this effect as in the one pion exchange potential

in the deuteron channel.

– 6 –
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The exchange of pseudo-Goldstone bosons between spin-1/2 fermions generates a sin-

gular potential similar to the one considered in the previous section. In fact, this problem

is very similar to the scattering of two low-energy nucleons and we refer to the litera-

ture [24–28] for a more detailed discussion of the power counting for this non-relativistic

effective theory. In that scenario, the long distance potential is also dominated by the

exchange of pseudo-Goldstone particles (pions). There are, however, a few differences be-

tween the present problem and the nuclear case. First, the sign of the one-Goldstone

exchange potential between particle and anti-particle is the opposite to the one between

two particles. Second, the separation between the M and m scales is more pronounced

than in the nuclear case.

At the lowest order in the low-momentum expansion the pseudo-scalar Goldstone boson

couples to the axial current of the dark matter particle,

g√
2
χγµγ5χ

∂µφ

f
, (3.1)

where χ is the dark matter particle, assumed to be a spin 1/2 Dirac fermion, φ the Goldstone

boson, g the axial coupling of these fermions and f the Goldstone boson decay constant.

Naturality arguments suggest a value of g ∼ 1 and 4πf ∼TeV, as well as M ∼TeV. The

constraints mentioned above and discussed in [10] imply in m & 0.3 GeV. Let us examine

the one-Goldstone exchange between a fermion and anti-fermion in our dark sector with

total angular momentum J = 1. The resulting one-pion exchange potential is well known

in nuclear physics and is given by

V (r) = VC(r) σ1 · σ2 + VT (r)
(

3r̂ · σ1 r̂ · σ2 − σ1 · σ2

)

(3.2)

where

VC(r) = αm2 e
−mr

r

VT (r) = αm2 e
−mr

r

(

1 +
3

mr
+

3

m2r2

)

,

and α = g2/(16πf). The central part of the potential corresponds to a ∆L = 0 transition,

while the tensor part of the potential corresponds to a ∆L = 2 transition (the spin structure

yields a traceless symmetric tensor). In the single channel case, we were interested mainly

in the s-channel annihilations since the annihilation rates are larger there due to the absence

of a centripetal barrier. Here, we want to consider the same s-channel annihilation. The

J = L = S = 0 channel is of no interest since the Yukawa potential in this state is repulsive.

We are led to consider then the J = 1, S = 1, L = 0, 2 coupled channels. The most general

wavefunction with S = 1,mJ = 0 quantum numbers is4

ψ(r) =

∞
∑

ℓ=0

uℓ(r)

r

[

C
(ℓ+1)0ℓ
−1 Yℓ,−1(r̂)|1, 1〉+C(ℓ+1)0ℓ

1 Yℓ,1(r̂)|1,−1〉+C(ℓ+1)0ℓ
0 Yℓ,0(r̂)|1, 0〉

]

+

∞
∑

ℓ=1

wℓ(r)

r

[

C
(ℓ−1)0ℓ
−1 Yℓ,−1(r̂)|1, 1〉+C(ℓ−1)0ℓ

1 Yℓ,1(r̂)|1,−1〉+C(ℓ−1)0ℓ
0 Yℓ,0(r̂)|1, 0〉

]

(3.3)

4There is in addition a J = ℓ component that, however, does not couple to the J = ℓ−1, ℓ+1 components

in the absence of a spin-orbit force.
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where the Clebsch-Gordan coefficients, CJmJL
mL

, are given by

C
(ℓ+1)0ℓ
±1 =

√

ℓ

2(2ℓ+ 1)
, C

(ℓ+1)0ℓ
0 =

√

ℓ+ 1

2ℓ+ 1
,

C
(ℓ−1)0ℓ
±1 =

√

ℓ+ 1

2(2ℓ+ 1)
, C

(ℓ−1)0ℓ
0 = −

√

ℓ

2ℓ+ 1
. (3.4)

and the kets represent spin states |S,mS〉. The asymptotic boundary condition analogous

to eq. (2.1) when the initial particles are in a mJ = 0 state is

ψ(r)→eikz |1, 0〉+f(θ, σ)
eikr

r
=

1

2ikr

∞
∑

ℓ=0

(2ℓ+1)Pℓ(cos θ)
[

eikr−(−1)ℓe−ikr
]

|1, 0〉+f(r̂, σ)
eikr

r

(3.5)

where σ represents the spin degrees of freedom. For distances larger than the potential

range the wave function is free and approaches

uℓ(r) → Bℓ sin(kr − lπ/2 + ǫℓ) = Bℓ
(−i)ℓ

2i
e−iǫℓ

(

eikr+2iǫℓ − (−1)ℓe−ikr
)

wℓ(r) → Cℓ sin(kr − lπ/2 + ζℓ) = Cℓ
(−i)ℓ

2i
e−iζℓ

(

eikr+2iζℓ − (−1)ℓe−ikr
)

(3.6)

Matching the incoming spherical wave part of eq. (3.5) and eq. (3.6) we arrive at the

relations

Bℓ =
iℓeiǫℓ

k

√
4π

√
ℓ+ 1, Cℓ = − i

ℓeiζℓ

k

√
4π

√
ℓ. (3.7)

Like in the single channel case the overall normalization of the wave function is unphysical

and cancels out in the computation of the Sommerfeld enhancement. The relative normal-

ization of the uℓ and wℓ components, however, is meaningful. To make things worse, it

appears as if the knowledge of the phase shifts ǫℓ and ξℓ is needed before the Scrödinger

equation can be solved. Fortunately, there is a simple algorithm to construct the wave func-

tion with the proper boundary conditions. Let us restrict ourselves to the J = 1,mJ = 0

case of interest. Then only u0 and w2 mix under the influence of the tensor force (from

now on we drop the subscript on u and w). We first find two linearly independent solutions

(u,w) and (ũ, w̃) satisfying u(0) = w(0) = 0 and ũ(0) = w̃(0) = 0. At large r, they will

behave like free waves with arbitrary normalizations:

u(r) → A1e
−ikr −B1e

ikr

w(r) → A2e
−ikr −B2e

ikr,
ũ(r) → Ã1e

−ikr − B̃1e
ikr

w̃(r) → Ã2e
−ikr − B̃2e

ikr.

It is easily verified that the relevant linear combination

(

up(r)

wp(r)

)

=

(

u(r) ũ(r)

w(r) w̃(r)

)(

A1 Ã1

A2 Ã2

)−1(

1

−
√

2

)

(3.8)

satisfies the desired boundary condition eq. (3.5). From the solution in eq. (3.8) we can cal-

culate the Sommerfeld enhancement. Assuming that the short distance operator describing

– 8 –
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Figure 3. Logarithms of the Sommerfeld enhancement S as a function G for V0 = −10/(MR2),

R = 1/M and coupling is α = G/M2, where M = 1000 GeV, and m = k = 1 GeV.

the annihilation is dominated by the s-wave contribution we calculate

S =

∣

∣

∣

∣

∣

∫ 3R
R dr u2(r)e−r2/R2

∫ 3R
R dr u2

0(r)e
−r2/R2

∣

∣

∣

∣

∣

. (3.9)

The resulting Schrödinger equation mixes only states with the same J . In the case of

the J = 1 state we have

− Ψ′′(r) +M
(

VL(r)θ(r −R0) + VS(r)θ(R0 − r)
)

Ψ(r) = k2Ψ(r), (3.10)

where

Ψ =

(

u(r)

w(r)

)

, VL(r) =

(

VC(r)
√

8VT (r)√
8VT (r) VC(r) − 2VT (r) + 6/r2

)

, VS(r) =

(

−V0 0

0 0

)

. (3.11)

Notice that the short distance potential arises, in the effective theory, from a four-fermion

interaction with no derivatives contributing only to the s-wave interaction. Short distance

d-wave contributions exist but are of higher order in the low energy expansion. It is also

worthwhile to note that the reversed sign of the potential, as compared to the nuclear case,

does not imply that the Sommerfeld enhancement will not occur. In fact, the potential

matrix above when diagonalized yields one repulsive and one attractive eigenvalue. Upon

inspection, at small r, the repulsive eigenvalue is suppressed compared to the attractive one.

Examples of numerical results for the Sommerfeld enhancement are shown in figure 3

as a function of the potential strength G and in figure 4 as a function of the short distance

potential V0. They exhibit a similar oscillatory pattern as the single channel calculation

in figure 2. The enhancement is large only at certain combination of parameters where a

bound state close to threshold exists. Contrary to the single channel 1/r3 potential, there
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Figure 4. Sommerfeld enhancement S as a function of the short distance potential V0. For the

coupling α = 1/M2, R = 1/M , where M = 1000 GeV, and m = k = 1 GeV.

does not appear to exist any trend towards larger enhancement for stronger potentials

(larger G). In this sense the coupled channel problem behaves like a short distance potential

(keeping in mind that the oscillatory behavior of the enhancement depends on G).

The periodicity of the enhancement as a function of
√
−MV0R shown in figure 4 is easy

to understand. The wave function for r > R depends on the value of ψ(R) and ψ′(R) only,

not on the behavior of ψ(r) at distances smaller than the cutoff R. The wave function inside

the square well, u(r) ∼ sin(r
√
−MV0 + k2), exhibits this periodic behavior for small values

of k2. As a consequence, the value of R needed to keep the low energy physics fixed varies

periodically with V0, a feature well known in non-relativistic effective theories [29]. While

most V0 values lead to moderate enhancement (S ∼ 1−10), there exists a significant range

of V0 values that can lead to S ∼ 10−1000 and several near resonance points that can lead

to S > 1000. Since the quantity V0 is dependent on the higher energy physics that has been

integrated out, the magnitude of these enhancements via pseudo-Goldstone exchange is not

a universal quantity and can only be determined within the context of a specific microscopic

model through the matching of the low energy effective theory to its ultraviolet completion.

The outcome of this matching is the value of V0 (given a value of the regulator parameter

R) that can then be used to determine the enhancement S as explained above.

4 Discussion

We discussed the enhancement of the annihilation rates of dark matter induced by the

exchange of a pseudo-Goldstone boson. From the point of view of model building for a

dark sector, this choice has the advantage of naturally generating the required hierarchy

between the WIMP mass and the mass of the particle mediating their interaction. For the

case of spin-1/2 Dirac dark matter that we considered, we find modest enhancement for

most of the parameter space. The enhancements produced are qualitatively similar to the

enhancements generated from a short-distance potential and only a certain amount of fine
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tuning can increased it to a level necessary to explain the cosmic ray data [34]. It is a

thorny issue to quantify how much fine-tuning is required for a certain enhancement. It is

not a priori clear how to assign probabilities in the effective theory parameter space. For

instance, should the probabilities be uniform in V0 or
√
V0?

We have not considered any details of model building of the microscopic theory of

dark matter that could realize the Goldstone exchange enhancement we discussed. We

point out though that an obvious model with the necessary features would be a scaled up

version of QCD in the dark sector. The analogy with nuclear physics are then very strong.

WIMP’s would be the “baryons” and the φ particle would play the role of the “pions”.

Assuming the existence of more than one light “quark”, we expect a splitting between

different “baryonic” states to be of the order ∆M ≈ m2/Λ (Λ ∼ M ∼ 4πf is the scale of

this theory). For Λ ≈ 1 TeV, m ≈ 250 MeV , ∆M ≈ 0.1 − 1 MeV range. WIMP excited

states with similar splittings have been invoked in the “Exciting dark Matter” [30] scenario

also incorporated in the unified description advocated in [10]. A similar QCD-like theory

was proposed in ref. [31], but, unlike our model, baryon formation is suppressed leaving

the dark mesons as the primary dark matter candidate.

Another question not investigated here but that deserves attention is the possible

enhancement of the annihilation rates through the formation of bound states over cos-

mological times previous to their decay into light standard model particles [32, 33]. In

the absence of very large or infinite range repulsive forces (the analogue of the Coulomb

repulsion in nuclei), the formation of very large “dark nuclei” seem to be possible. This

lumpiness of the distribution of dark matter will have a strong effect on any estimate of

their annihilation rates.
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